domingo, 11 de janeiro de 2015

Computador quântico


O Poder em Níveis Subatômicos
 
 
 

 
Um computador quântico é um dispositivo que executa cálculos fazendo uso direto de propriedades da mecânica quântica, tais como sobreposição e interferência. Teoricamente, computadores quânticos podem ser implementados e o mais desenvolvido atualmente,o D-Wave Two, trabalha com 512 qubits de informação. O principal ganho desses computadores é a possibilidade de resolver em tempo eficiente, alguns problemas que na computação clássica levariam tempo impraticável (exponencial no tamanho da entrada), como por exemplo, a fatoração em primos de números naturais. A redução do tempo de resolução deste problema possibilitaria a quebra da maioria dos sistemas de criptografia usados atualmente. Contudo, o computador quântico ofereceria um novo esquema de canal mais seguro.Computadores quânticos são diferentes de computadores clássicos tais como computadores de DNA e computadores baseados em transístores, ainda que estes utilizem alguns efeitos da mecânica quântica.
 
 
A estrutura dos computadores quânticos
 
 
Na Mecânica Quântica, é possível que uma partícula esteja em dois ou mais estados ao mesmo tempo. Uma famosa metáfora denominada o gato de Schrödinger expressa esta realidade. Imagine que um gato esteja dentro de uma caixa, com 50% de chances de estar vivo e 50% de chances de estar morto; para a Mecânica Quântica, até abrirmos a caixa e verificarmos como está o gato, ele deve ser considerado vivo e morto ao mesmo tempo. A esta capacidade de estar simultaneamente em vários estados chama-se superposição.
Um computador clássico tem uma memória feita de bits. Cada bit guarda um "1" ou um "0" de informação. Um computador quântico mantém um conjunto de qubits. Um qubit pode conter um "1", um "0" ou uma sobreposição destes. Em outras palavras, pode conter tanto um "1" como um "0" ao mesmo tempo. O computador quântico funciona pela manipulação destes qubits.
Um computador quântico pode ser implementado com alguns sistemas com partículas pequenas, desde que obedeçam à natureza descrita pela mecânica quântica. Pode-se construir computadores quânticos com átomos que podem estar excitados e não excitados ao mesmo tempo, ou com fótons que podem estar em dois lugares ao mesmo tempo, ou com prótons e nêutrons, ou ainda com elétrons e pósitrons que podem ter um spin ao mesmo tempo "para cima" e "para baixo" e se movimentam em velocidades próximas à da luz. Com a utilização destes, ao invés de nano-cristais de silício, o computador quântico é menor que um computador tradicional.
Uma molécula microscópica pode conter muitos milhares de prótons e nêutrons, e pode ser usada como computador quântico com muitos milhares de qubits. A grande questão a ser resolvida hoje para a implementação destas máquinas é a capacidade de controlar este sistema, já que as interferências são grandes e o tempo de coerência dos estados das partículas, pequeno. Mas este problema ja esta próximo ao seu fim.


O poder dos computadores quânticos

Localizar todos os fatores primos de um número grande pode ser uma tarefa muito difícil. Um computador quântico poderia resolver este problema muito rapidamente. Se um número tiver n bits (ou seja, se tiver o comprimento de n dígitos quando escrito em binário), então um computador quântico com um pouco mais de 2n qubits poderá encontrar os seus fatores. Também poderá solucionar um problema relacionado, chamado problema do logaritmo discreto. Esta capacidade poderia permitir a um computador quântico quebrar qualquer dos sistemas criptográficos atualmente em uso. A maior parte das cifras de chave pública mais populares poderiam ser quebradas com rapidez, incluindo formas da cifras RSA, ElGammal e Diffie-Helman. Estas cifras são utilizadas para proteger páginas web seguras, email encriptado e muitos outros tipos de dados. A quebra destes códigos poderia ter um impacto significativo. A única forma de tornar seguro um algoritmo com o RSA seria tornar o tamanho da chave maior do que o maior computador quântico que pudesse ser construído. Parece provável que possa sempre ser possível construir computadores clássicos com mais bits que o número de qubits no maior computador quântico, e se verificar que isto é verdade, então algoritmos como o RSA poderão permanecer seguros.
Se um computador quântico fosse baseado nos prótons e nêutrons de uma molécula, seria talvez demasiado pequeno para ser visível, mas poderia factorizar números inteiros com milhares de bits. Um computador clássico a correr algoritmos conhecidos também poderia factorizar estes números, mas para o conseguir fazer antes que o sol desaparecesse, teria de ser maior que universo conhecido. Seria algo inconveniente construí-lo.
Não surpreendentemente, os computadores quânticos poderiam também ser úteis para correr simulações de mecânica quântica. O aumento de velocidade poderia ser tão grande como para factorizações. Isto poderia trazer grandes benefícios a muitos físicos.
Atualmente se sabe que essa vantagem dos computadores quânticos existe apenas para os três problemas seguintes: fatoração, logaritmo discreto e simulações de física quântica. Existe outro problema em que os computadores quânticos têm uma vantagem maior, porém menos significativa, a busca quântica em base de dados, à qual é referida algumas vezes por square root speedup.
Suponha que existe um problema como encontrar a senha para desencriptar um arquivo. O problema possui as quatro propriedades:
  • A única forma de resolvê-lo é chutar respostas repetidamente e verificá-las
  • Existem n respostas possíveis para se verificar
  • Toda resposta possível gasta o mesmo tempo de verificação
  • Não existem pistas indicando quais respostas sejam melhores. Gerar as possibilidades aleatoriamente é tão eficiente quanto verificá-las em alguma ordem especial
Problemas com todas as quatro propriedades levarão uma média de n/2 tentativas para encontrar a resposta usando um computador clássico. O tempo gasto por um computador quântico seria proporcional à raiz quadrada de n. Isso pode representar um ganho enorme, encurtando o tempo para solução de alguns problemas de anos para segundos. Essa vantagem pode ser usada para atacar cifras simétricas tais como o 3DES e AES. Porém a defesa contra tal ataque é fácil, consistindo em dobrar o tamanho da chave para a cifra. Há também mais métodos complicados para tornar uma comunicação segura, tal como usar Criptografia Quântica.
Atualmente não há outro problema prático conhecido para o qual os computadores quânticos mostrem um ganho expressivo sobre os computadores clássicos. As pesquisas continuam, e mais problemas podem, então, ser identificados.



 



Nenhum comentário:

Postar um comentário